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Testing compilers with Al models, especially large language models (LLMs), has shown great promise. However,
current approaches struggle with two key problems: The generated programs for testing compilers are often
too simple, and extensive testing with the LLMs is computationally expensive. In this paper, we propose a
novel compiler testing framework that decouples the testing process into two distinct phases: an offline phase
and an online phase. In the offline phase, we use LLMs to generate a collection of small but feature-rich code
pieces. In the online phase, we reuse these code pieces by strategically combining them to build high-quality
and valid test programs, which are then used to test compilers.

We implement this idea in a tool, LegoFuzz, for testing C compilers. The results are striking: we found 66
bugs in GCC and LLVM, the most widely used C compilers. Almost half of the bugs are miscompilation bugs,
which are serious and hard-to-find bugs that none of the existing LLM-based tools could find. We believe this
efficient design opens up new possibilities for using Al models in software testing beyond just C compilers.
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1 Introduction

Compilers play a fundamental role in the modern software ecosystem. However, despite significant
efforts to enhance their reliability, they remain prone to bugs [3]. Therefore, large-scale compiler
testing is essential for identifying and eliminating these bugs. Various approaches have been
proposed, such as random program generation [21, 22, 40] and mutation-based testing [16, 33].
With the advancement of Large Language Models (LLMs), new tools have emerged to enhance
compiler testing. A notable example is Fuzz4All [38], a universal fuzzer designed for multiple
purposes, including compiler testing. It leverages LLM-generated prompts within the testing loop
to iteratively generate test programs, improving the efficiency and diversity of fuzzing. Another
tool, WhiteFox [39], is specifically designed for deep learning compilers and features a multi-agent
framework. It generates prompts using relevant documentation and example code to guide LLMs
in producing targeted and effective test programs.

Although current LLM-based compiler testing has demonstrated great potential, its practical
deployment comes with notable challenges. In real-world applications, two major concerns arise:
(1) the difficulty of ensuring the quality and validity of generated test cases and (2) the high
computational cost of integrating LLMs into large-scale testing workflows. Below, we elaborate on
the two core challenges.
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1 // missing <inttypes.h> 1// ...

2 typedef struct { 2 int main() {

3 int32_t id; line 6:error: expected 3 char username[6];

4 3} U; ')' before 'PRId32' 4  char name[] = "Jonathan";

5 void showU(const U* u) { 5 strcpy(username, name);

6 printf("%"PRId32"\n", u->id); 6 return ©; line 5:error: AddressSanitizer:
7} 7} stack-buffer-overflow

(a) LLM-generated code with syntax error. (b) LLM-generated code with semantics error.

Fig. 1. Examples of LLM-generated erroneous code.

> Challenge 1: Low quality of testing programs. In compiler testing, we typically need to
generate complex and valid programs, both syntactically and semantically. However, the programs
generated by the current LLM-based tools do not always meet these requirements. Unlike natural
languages, programs contain rich grammar and semantic constraints, which LLMs are not fully
aware of [15]. Thus, LLMs are fundamentally limited in that they are not guaranteed to generate
valid programs. For example, Figure 1 (a) shows the C program generated by the model used
in Fuzz4All, which contains a syntax error and cannot be compiled by GCC. Figure 1 (b) shows
another LLM-generated program, which can be compiled but contains a semantic error, i.e., a buffer
overflow in line 5. Such invalid programs can only be used to find crash bugs, not miscompilation
bugs. In fact, neither Fuzz4All nor WhiteFox found any miscompilation bugs in C compilers. All
GCC bugs found by Fuzz4All are related to compiler front-end crashes rather than core compiler
optimizations. WhiteFox identified only two bugs in LLVM, one involving a compiler backend
crash and another related to a crash in error diagnostics. According to its own reports, Fuzz4All
generates only 37.26% valid C programs for GCC. The average length of its generated programs is
just 18 lines, while WhiteFox produces slightly longer programs with an average of 21 lines based
on our evaluation. Hence, how to generate complex (e.g., thousands of lines) yet valid programs
with LLMs for compiler testing is a challenging problem.

> Challenge 2: High computational cost. Currently, using LLMs for fuzzing is expensive, both
computationally and financially. An effective fuzzing process is usually required to generate a
large volume of test inputs in a short period [43]. However, current LLM-based fuzzers are highly
constrained by the sheer amount of computational cost of LLMs. For example, Fuzz4All can generate
only around 16,000 valid C programs in 24 hours. Extending these LLM-based fuzzers to produce
hundreds of millions of programs would require an extremely large amount of computational or
financial resources. In contrast, traditional fuzzers can easily achieve such volumes of data on
modern hardware, as there is some code analysis checking the changes or the generated code to
some degree. For example, Csmith generates around 1 million test programs overnight, with 99.96%
validity rate [10, 11, 34].

> Our core idea. This paper addresses the challenges mentioned above by innovatively decoupling
the entire compiler testing process into two distinct phases: an offline phase and an online phase.
Rather than relying solely on LLMs throughout the entire pipeline, we integrate both LLMs and
traditional program generation/mutation techniques, each assigned to the phase where they are
most effective. In the offline phase, we utilize LLMs to generate small yet feature-rich and valid
programs, which are then reused as building blocks for the online phase. In the online phase,
we iteratively use the building blocks to generate increasingly complex yet valid programs for
compiler testing. This hybrid approach balances the strengths of both LLMs and traditional methods,
optimizing both the quality and the cost of LLM-based compiler testing.
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> Our approach: LegoFuzz. We propose LegoFuzz, a novel compiler testing framework that
strategically decouples LLM usage into two synergistic phases: an offline phase for collecting
high-quality code building blocks through LLM-guided transformation of real-world code, and
an online phase for iterative program synthesis that efficiently reuses these building blocks to
generate complex test cases without further LLM invocations. Our goal in the first offline phase
is to generate programs with measurable complexity while maintaining syntactic and semantic
validity. An observation is that LLM-generated code often exhibits recurring structural patterns
that correlate with the models’ pre-training data [9]. This observation suggests potential limitations
in the diversity of generated programs, which could affect their effectiveness for compiler testing.
To address this limitation, we leverage existing open-source code as templates to guide LLMs in
generating or transforming code snippets. We then validate their syntactic and semantic validity
and only keep the valid ones. All code snippets are organized as single functions to facilitate the
validation as well as the future synthesis process. Using this approach, we construct a code database
containing over half a million functions from 146 open-source projects, including system software
(e.g., Linux), databases (e.g., Redis), and web servers (e.g., Nginx).

The online phase uses these functions as building blocks to synthesize larger, more complex
programs. A crucial step in this phase is to establish dependencies between the functions. Without
these dependencies, i.e., simply putting multiple functions in one program, compiling the program
would be mostly equivalent to compiling each function separately, thus limiting the coherence of
the generated program. For example, the left snippet shows two independent functions, while the
right one introduces a call from a to b, forming a dependency. With such dependencies, we cover
3,726 more lines in LLVM and trigger more analysis and optimizations like inline and instcombine.

int b(int y) { returny * 2; } int b(int y) { returny * 2; }
int a(int x) { int a(int x) {
if (x > 10) return 1; if (x > b(5)) return 1;
else return 0; else return 0;
} }

We implement two specific mechanisms to build dependencies between functions: (1) function
call insertion, where we insert calls between functions based on type compatibility and semantic
constraints, and (2) global variable share, where we introduce shared variables to create verifiable
data dependencies between functions.

To evaluate the effectiveness of LegoFuzz, we select two widely used modern C compilers, GCC
and LLVM, as our fuzzing targets. By stress-testing their latest versions, LegoFuzz successfully
uncovered 66 compiler bugs, among which 30 were miscompilation bugs, and 56 were already fixed
by the developers. In conclusion, this paper makes the following contributions:

e We present LegoFuzz, an LLM-based compiler testing framework that decouples the program
generation process into offline and online phases, enabling the effective generation of high-
quality test programs with LLMs.

e We design a novel real-world code-aligned prompting method to guide LLMs in generating
code snippets with a diverse range of features.

e We propose a novel iterative program synthesis method that strategically combines multiple
code snippets to complex, feature-rich yet semantically valid programs.

e We implement LegoFuzz for C compiler testing and construct a comprehensive database
consisting of over half a million functions generated by LLMs. We conduct an extensive
fuzzing campaign with LegoFuzz, discovering 66 unique bugs in widely used modern C
compilers, i.e., GCC and LLVM.
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Fig. 2. Design overview of LegoFuzz. The left part is the offline code database construction phase, which
provides the building blocks for the online iterative program synthesis on the right.

LegoFuzz has been open-sourced at https://github.com/cuhk-s3/LegoFuzz. We believe that this
fuzzing framework offers a promising direction for applying LLMs to real-world compiler testing
scenarios. Its modular and extensible design philosophy allows easy adaptation to other systems
under test, broadening its applicability beyond C compiler testing.

2 Design Overview

This section outlines the high-level design of our proposed framework LegoFuzz. The core idea of
LegoFuzz is to separate the whole testing process into offline and online phases. Figure 2 shows the
high-level workflow of LegoFuzz. The offline phase queries an LLM to collect valid code snippets,
which enables us to control the quality of code as well as the cost of LLM invocations. In contrast,
the online phase eliminates the dependency on LLMs by reusing these pre-generated code snippets.
Through our proposed iterative program synthesis, the online phase constructs increasingly complex
yet valid programs, which can be used to test compilers. Below, we provide a more detailed overview
of our LegoFuzz:

(1) Phase 1: Offline Code Database Construction with LLMs. Firstly, we utilize an LLM
to generate a diverse set of code snippets. At a high level, we propose to use real-world
code snippets from GitHub repositories as the guiding templates to enable LLMs to generate
diverse code snippets. As illustrated in the left part of Figure 2, the first step is to collect
code via LLM-based alignment. In this example, four functions, i.e., func1, func2, func3, and
func4, are collected. In the second step, we analyze each function to determine its validity
and get its run-time profiling information. Invalid functions with syntactic or semantic errors
are discarded. In this example, the function func3 is excluded. All collected code snippets,
along with their profiling information, are stored in the code database.

(2) Phase 2: Online Iterative Program Synthesis. Although the code produced by the LLM
contains diverse features, they are still simple, e.g., averagely 30 lines, and we could not find
any interesting compiler bugs according to our evaluation. In this paper, we propose an
iterative program synthesis method to generate complex programs with these LLM-generated
code snippets as building blocks. For example, in the right part of Figure 2, we select the
function funcl as the seed function in Step (3. During Round 1 of synthesis in Step @,
func1 is modified by replacing the value of x with a call to func2(). LegoFuzz ensures
that this replacement introduces no side effects by leveraging the pre-collected profiling
results. Similarly, in the following two iterations of synthesis in Step (5, a call to func4
is inserted into func2, and a read from the global variable g is inserted into func4. The
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1 unsigned long a; 1 int a(int b, int c[], int d, int e) {
2 int b() { 2 _Bool f = (e == b); int g = 1;
3 unsigned long e = a; 3 if (1F) {

4 int ¢ = e; 4 g =0;

5 intd =c< 100 ? c : 0; 5 for (int h = @; h < d; h++) {
6 if (d + (int)e & 608) { 6 if (c[h] ==e) {

7 while (e & 608) { 7 g = 1; break;

8 e <= 1; 8 }

9 } 9 }

10 } 10 }

11 return 0; 11 return g;

12 } 12 %}

Fig. 3. Code that triggers a crash in GCC. Fig. 4. An LLM-generated program with potential overflow.

example program can undergo multiple synthesis iterations in Step (©), allowing for the
reuse of additional building blocks. After synthesis, we generate a driver main function that
calls all used functions such as func1, func2, and func4, and operates on global variables
like g to perform mutations and print checksums for fuzzing. We detail this process in
Section 4. Through this iterative program synthesis process, the final synthesized program
can grow significantly in complexity, ultimately reaching tens of thousands of lines in
length. Because this online phase directly uses the established code database, it can quickly
produce a large number of complex programs without querying LLMs. In some sense, we are
maximizing the utility of LLMs’ outputs with our iterative synthesis while eliminating the
need for continual LLM usage to significantly reduce costs.

LegoFuzz aims at efficiently and effectively generating complex yet valid programs using LLMs.
This approach enables the seamless integration of LLM-based fuzzing into real-world testing
pipelines. The framework’s modular architecture provides great flexibility, allowing developers to
easily adapt and extend its capabilities.

3 LegoFuzz

In this section, we describe the technical details of our LegoFuzz framework. Section 3.1 details the
offline code collection with large language models, while Section 3.2 introduces the online iterative
program synthesis.

3.1 Offline Code Database Construction with Large Language Models

The goal of the offline phase is to collect a set of code snippets using LLMs, which will serve as
the building blocks for the later online phase. We use an LLM to first generate these code snippets.
Then, we validate them and carefully analyze how they work. By the end of this offline phase,
we will have a code database Dp, where each entry E; € Dp contains two essential parts, ie.,
E; = {F;, profi}: (1) F; is a code snippet existing as a function, and (2) prof; is a detailed profile
that records how the function F; behaves when run, such as variable types and variable values.
Specifically, each F; meets the following two criteria:

e Expressive: Compilers must handle a wide variety of program structures and features. For
effective compiler testing, our generated programs should contain complex and expressive
elements such as non-trivial control flows and intricate program semantics. Figure 3 shows
one of our reported crash bugs in GCC. This bug is triggered by the complex, nested, and
unbounded loop structure in lines 6—10. Such sophisticated code patterns are difficult for
LLMs to generate through standard natural language prompting. To overcome this limitation,
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int buf_write(int nalloc, int len,
char *body, char c) {
Buffer b; b.nalloc = nalloc;
b.len = len; b.body = body;

// Issuel: External function
int realloc_body(Buffer*);

1 struct Buffer { 1 struct Buffer {
2 long nalloc; 2 long nalloc;
3 long len; 3 long len;

4 char* body; 4 char* body;

5 1 5 )

6 6

7 7

8 8

(o)
Vo]

10 // Issue2: Non-numeric I/O 16 if (b.nalloc == (b.len + 1)) {

11 void buf_write(Buffer *b, char c) { 11 b.nalloc *= 2;

12 if (b-»nalloc == (b->len + 1)) { 12 b.body = realloc(b.body, b.nalloc);
13 realloc_body(b); 13}

14 } 14  b.body[b.len++] = c;

15  b->body[b->len++] = c; 15 return b.len;

16 } 16 }

(a) A simplified program from real-world. (b) A program transformed by an LLM.

Fig. 5. The program in (a) is from an open-source project. LLMs transform it to the function in (b).

we introduce real-world code-aligned prompting, a technique that uses real-world code as
templates to guide LLM code generation. We explain this approach in detail in Section 3.1.1.

e Valid: All generated code must be both syntactically and semantically valid, adhering to the
language specification. For C programs, this means passing compiler grammar checks and
containing no undefined behaviors at runtime. This property is crucial because compilers
are only designed to correctly compile valid code [6], making it impossible to detect genuine
miscompilation bugs using invalid code. In our design, we ensure validity through rigorous
validation and profiling (see details in Section 3.1.2). Figure 4 illustrates a function transformed
by an LLM from the open-sourced Fastsocket [12] project. This function is only valid when
the input variable d is less than the length of array c[]. For instance, when d=1 and len(c)=2,
the function works correctly. However, if d=3, a stack buffer-overflow occurs at line 6, making
the function invalid. To prevent such issues, for each function, we validate it with diverse
randomized inputs and only keep inputs that exhibit no undefined behaviors in the function.
With these inputs, we ensure each function can be safely used in our online program synthesis
phase. We detail this process in Section 3.1.2.

3.1.1  Real-world Code-aligned Code Generation.

LLMs have shown a superior ability in code generation, but it remains challenging to instruct
LLMs to produce a large volume of feature-rich code suitable for compiler testing. Take the code
in Figure 5 (a) as an example. It contains a non-primitive struct and manipulates a struct variable
inside the buf_write function. How can we instruct LLMs to generate such code? Precisely describing
such code features in natural language is hard, let alone the automated generation of millions of
such code. Fortunately, developers have already written such code in real-world projects. The large
volume of open-sourced projects exercise a wide range of language features and code patterns,
such as pointer manipulation, byte-level operations, non-trivial control flows, etc. Our idea is to
use these real-world codes as the template to guide LLMs. In fact, the code in Figure 5 (a) is from
an open-source project 8cc[35], and the code in Figure 5 (b) is the transformed version by an LLM
that can be used in our LegoFuzz framework. Below, we detail two critical designs of our real-world
code-aligned code generation approach.
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1 int fool(int x) { 1 int g[e] = {2}; (10 Pairl) input:1=>output:_ X

2 inty = x + 1; 2 1nF foo2(int a) { $ gcc case.c -fsanitize=undefined

3 if (y 1= 1) 3 int b = 1; $ /app/example.c:6:14: runtime error:

4 return y + 1; 4 for (;;) { index 1 out of bounds for type 'int [1]'

5 y=y+1; 5 b+=a+ 1;

// output truncation 6 if (b > glal) (10 Pair2) input:@=>output:1
7 break; . .

$ gce -00 case.c -0 case.out 3 } Runtime Information:

$ <source>:5:3: error: expected ol — _

declaration or statement at end 9 return 1; Vi b=1{23} a={1}

of input X 10} v Ve: b=1{2,3}, a={1}, gla] = (2}

Fig. 6. Process of code database construction.

> Where and how to get real-world code snippets? In our framework, real-world code snippets
can be sourced from a variety of origins with varying levels of granularity. These snippets can range
from entire programs to individual functions, as LLMs possess a fundamental ability to understand
the surrounding context of a given snippet. In order to control the length of our prompts and
facilitate the profiling process, we extract functions from open-source projects as well as the
necessary context, such as type definitions and global variables. These real-world functions will
then be used as the template to guide LLMs. We will justify our choice of having functions as the
granularity in Section 6.

> How to prompt LLMs to generate real-world code-aligned code? To preserve the expres-
siveness of LLM-generated code, we introduce real-world code-aligned prompting, a technique
that guides LLMs in transforming real-world code snippets. To ensure proper transformation, we
specifically design the prompt with instructions that enforce two levels of alignment:

¢ Syntax-level alignment. To facilitate the input generation of later profiling process, Lego-
Fuzz requires the transformed function (1) to be numeric, i.e., both its input and output have
only numeric types or pointers to numeric types, and (2) to be the sole function with no
additional function definitions present. For example, the transformed function in Figure 5 (b)
satisfies this requirement. This requirement ensures that we can easily model a function’s
semantics with its numeric input and output, which eases our implementation of both the
later profiling and online program synthesis.

e Semantics-level alignment. One might think that LegoFuzz cannot transform real-world
code having complex types (e.g., struct Buffer in Figure 5 (a)) or multiple functions (e.g.,
realloc_body and buf_write in Figure 5 (a)). However, we guide the LLMs to preserve
the full semantics of the original program. For complex types like struct, initialization can
be deferred to the function body. For programs with multiple functions, the transformed
output aims to inline all logic into a single function while maintaining the original program’s
behavior. For example, in Figure 5 (b), the struct definition is moved inside the function
body, and the struct input is replaced with its numeric fields. Furthermore, LLMs can deduce
that realloc_body likely reallocates memory for the body field of Buffer. Consequently, it
can be directly implemented using the standard C memory management function realloc.
This inference achieves the semantics-level alignment with the original program.

Since LLMs do not always follow users’ instructions, even if we instruct LLMs to satisfy the
above alignments, the transformed function may still violate the above requirements. Thus, we
validate and filter these transformed functions in the next step.

3.1.2 Code Database Construction.
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In this part, we describe how we validate the transformed functions and profile the valid ones.
The profiling process is inspired by Hermes [33] and Creal [19].

Although we have instructed the LLM to align the generated functions with the original programs,
the output may still exhibit several issues that impact their validity. For instance, current LLMs are
constrained by the max_completion_tokens parameter [28], which limits the number of output
tokens. As a result, generated programs are prone to truncation, leaving them incomplete and
cannot be compiled. For example, the first function foo1 in Figure 6 is incomplete due to truncation,
resulting in a compilation error. This function is thus excluded from the code database.

For syntactically valid functions, it is crucial to ensure their runtime behaviors are also correct.
Since runtime behaviors are associated with input, different inputs may lead to different behaviors.
For instance, the second function foo2 in Figure 6 is syntactically valid, but it may lead to runtime
errors when the input a is greater than the length of the global array g[ ]. To ensure runtime validity,
we construct a main program that invokes the candidate function with a randomly generated input
based on its input types, and then use multiple sanitizers [31, 32]—including ASan, UBSan, MSan,
and TypeSan—together with CompCert [5] to cross check if the input triggers runtime errors, a
common practice in checking the runtime validity of a program [16, 19]. Since sanitizers can miss
certain undefined behaviors in theory [18], we did not encounter such cases during our evaluation.
We believe that this is due to our combined use of multiple tools, which makes it highly unlikely
that false alarms will occur. If the input does not trigger runtime errors, we then use this input to
profile the function and collect the intermediate runtime information. The top right part of Figure 6
shows the first generated input (i.e., 1) for the function foo2, which triggers a stack buffer-overflow.
Thus, we discard this input and proceed to generate another input. The second input (i.e., 0) is valid,
so we use it to profile the function and collect its runtime profile prof. For each valid function F;,
its profile prof; contains the following information:

e input: The input value of the function, such as 0.
e output: The output of executing the function with the input, such as 1.

e expression values at each line: The values of expressions evaluated at each line of the
function, such as the values of b, a, and g[a] at lines 5 and 6, as shown in the bottom right
part of Figure 6. We focus on basic expressions that hold values, including variables, array
accesses, pointer dereferences, and field accesses.

In practice, LegoFuzz can generate multiple valid inputs for one function, which means one F;
may have multiple profiles prof;. These functions, together with their profiles, are stored in the
code database Dp: (1) each function F; is syntactically valid, and (2) invoking F; with any input
from the corresponding prof; is semantically valid.

A natural question arises: can these individual functions alone detect compiler bugs?
Our evaluation in Section 5.2 shows that the answer is negative. This finding directly motivates
our approach to synthesize complex test programs by combining multiple functions with rich
inter-dependencies rather than relying on individual functions alone.

3.2 Online Iterative Program Synthesis

As has been discussed before, effective compiler testing often requires complex programs with
rich features. Given the code database, our target is to synthesize complex yet valid programs.
One may argue that we can simply put multiple functions into one file to get a complex program,
as shown in Figure 7 (a), where we put two individual functions, func1 and func2, into one file.
However, since there are no dependencies between these two functions, compilers will deal with
them separately at the module level. Thus, it is almost equivalent to testing the compilers with
each function individually.
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1 int g = 4; 1 int g = 4;

2 // Input: {1, @} => Output: 2 2

3 int funcl(int a, unsigned int b){ 3 int funcl(int a, unsigned int b){
4 // prof: a = {1} 4 // prof: a = {1}

5 b=a+1; 5 b=a+1; g=g+a - 1;
6 return b; 6 return b;

7 } 7}

8 // Input: {1, 2} => Output: 5 8

9 struct S { int c¢; }; 9 struct S { int c; };

10 int func2(char d, int e) { 10 int func2(char d, int e) {
11 struct S s; 11 struct S s;

12 // prof: d = {1}, e = {2} Two rounds of 12 // prof: d = {1}, e = {2}
13 s.c = d; iterative synthesis 13 s.c = funcl(d, e - 2) - 1;
14 for (53) { 14 for (55) {

15 // prof: e = {2} 15 // prof: e = {2}

16 d=¢e + s.c; 16 d=g -2+ s.c;

17 if (s.c > e) break; 17 if (s.c > e) break;

18 S.C ++; 18 S.C ++;

19 } 19 }

20 return d; 20 return d;

21 } 21 }

22 int main() { func2(1, 2); } 22 int main() { func2(1, 2); }
(a) Example at the start of the synthesis process. (b) Example program after iterative synthesis.

Fig. 7. The example in (a) is the beginning of one synthesis iteration. One possible synthesis result after two
iterations is shown in (b). The synthesized part is highlighted in gray in (b).

Our core idea is to couple multiple functions by building complex dependencies among them.
We build the dependencies in two ways: (1) function call insertion and (2) global variable share. For
example, the program in Figure 7 (b) shows the resulting program from Figure 7 (a) by building
dependencies with LegoFuzz. In Figure 7 (b) at line 13, we replace the expression d with a call to
func1 to build dependency; The global variable g is written in func1 at line 5 and read by func2 at
line 16, further building dependencies between them.

Algorithm 1 provides the algorithmic sketch of our iterative program synthesis approach. We
use the example in Figure 7 to illustrate the synthesis process. Given a code database D and a
predefined iteration number N, our generator operates as follows:

Step 1. Generate Global Variables (line 2): Similar to Csmith and other generative black-box tools [21,
22, 40], we first generate a set of global variables G with random numeric types and values.
For example, the global variable g in Figure 7 (b) is generated with a random value of 4.

Step 2. Prepare Seed Program (lines 3-5): A function is randomly selected from Dr as the seed
function. Next, we generate the driver program % to invoke it with an input. The seed function
is then added to the list of used functions F_list. For example, func2() is the selected seed
function in Figure 7 (b), and we synthesized the driver main function to invoke it with an
input selected from its profile, i.e., {1, 2}.

Step 3. Select Target Function (lines 7-9): For each iteration, the process begins by selecting a target
function, denoted as Target, which will be used in the future synthesis. A set of matched
expressions & is then extracted from its stored profiling result prof. Since there is only one
function in the first iteration, i.e., func2() in Figure 7 (a), the target function is func2(). The
matched expressions are d at line 13, e and s. c at lines 16 and 17. The high-level guideline
of selecting these matched expressions is to choose the ones that can be replaced by other
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Algorithm 1: Iterative Program Synthesis

1 procedure Synthesis(Code Database Dp, Iteration Number N):

2 G < GenerateGlobalVars()
3 Seed < SelectFunction(DpF)
4 P « SynthDriverProgram(Seed)
5 F_list « [Seed]
6 repeat
7 Target «— GetFunction(F_list)
8 prof « GetProfile(Target)
9 & « GetMatchedExpr(prof)
10 foreach expr € & do

// randomly decide if to sythesize expr
11 if FlipCoin() then

// randomly choose function call insertion or global variable share

12 if FlipCoin() then
13 F « SelectFunction(Dp)
14 if F ¢ F_list then
15 expr’ < SynFuncCall(expr, F, prof)
16 P « InsertFunc(P, expr, expr’, Target)
17 F_list.append(F)
18 else
19 g «— GetGlobalVar(G)
20 expr’ « SynGlobal(expr, g, prof)
21 | P « InsertGlobalVar(P, expr, expr’, Target)
22 until NV times
23 return

expressions with the same runtime values. Note that the runtime values of these expressions
under the input are available and stored in prof. For example, the runtime value of d is 1 at
line 13, as annotated in line 12 in Figure 7 (a).

Step 4. Build Dependency by Function Call Insertion (lines 13-17): If the expression is selected to be
synthesized with a function call, the generator first selects a function F from Dy. To avoid
potential stack overflow from recursive or cyclic calls, the generator checks if F is already in
the F_list, i.e., whether F has been used or not. If F is not in F_[ist, a new expression expr’
with a call to F is synthesized to replace the original expression expr, and F is added to F_list.
For example, from Figure 7 (a) to (b), the expression d at line 13 is replaced by a function call
to func1(). We will discuss the details of function call insertion in Section 3.2.1.

Step 5. Build Dependency by Global Variable Share (lines 19-21): If the expression is selected to be
synthesized with a global variable, the generator randomly selects a global variable g from G.
It then synthesizes a read or write operation for g with expr. For example, from Figure 7 (a) to
(b), the expression e is replaced by g - 2 in line 16. Another usage of the global variable g is
also shown at line 5, where we write g with a in the next iteration. The read or write from/to
the same global variable builds dependencies between functions func1() and func2(). We
will discuss the details of global variable share in Section 3.2.2.
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Algorithm 2: Function Call Insertion.

1 procedure SynFuncCall(Target Expression expr, Function F, Profile prof):

2 [inpy, inpy, -+, inp,, 1 « F.input

3 FC = “ Fy.name (<para>{, <para>z, ---, <para>p)”
4 foreach k € [1...m] do

5 V « GetStableVariables(prof)

6 para < SynthesizeExpression (V, inpy)

7 | FC.Substitute(<para>, para)

8 if IsStable(expr) then

9 val «— GetValue(expr)

10 | expr’ « SynthesizeExpression(FC, val)

11 else

12 L expr’ « expr + SynthesizeExpression(FC, 0)
13 return expr’

As shown in the algorithm, the synthesis iterates over all matched expressions, indicating that
multiple insertions can occur in a single iteration. Consequently, the finally synthesized program
may contain more than one function call. Additionally, by using a predefined iteration number N,
the size of the synthesized program remains controllable. The details of building dependencies in
Steps 5 and 6 are discussed in Section 3.2.1 and Section 3.2.2. The key to building dependencies is
to ensure that the synthesized program has the same semantics as the seed program. For example,
the final synthesized program in Figure 7 (b) has the same output as the seed program in Figure 7
(a). This semantic preservation relies on the valid profiling results obtained in the offline phase,
which guide the safe dependency construction. Since all profiling is completed offline, it does not
impact the efficiency of the online synthesis process.

3.2.1 Build Dependency by Function Call Insertion.

Algorithm 2 outlines the procedure for synthesizing an expression using a function call. It
begins by extracting the inputs of F stored in the code database and constructs a function call with
parameter placeholders that match the number of inputs (lines 2-3). For each placeholder, the set of
stable variables V—those that exhibit only one run-time value at a given location—is collected from
the stored profiling results prof (line 5). The placeholder is then substituted with a synthesized
parameter para that aligns with the value (lines 6-7). The expression expr is then handled based
on its stability in the following two cases: (1) expr is stable (lines 8-10): The corresponding stable
value val is retrieved, and a new expression expr’ is synthesized by combining the return value of
F with val. (2) expr is unstable (lines 11-12): A synthesized expression synthesized with FC equal
to 0 is concatenated with the original expression to form the new expression expr’.

Example. As shown in Figure 7(a), the target expression d in line 13 is stable with a single value of
1. Our target is to synthesize a new expression with a call to func1() that also evaluates to 1:

e (Line 2 in Algorithm 2) We extract the input list for func1() as {1, 0}.

e (Line 3 in Algorithm 2) We construct the function call FC as “func1(<para>;, <para>;)”.

o (Lines 5-6 in Algorithm 2) We first retrieve the set of stable variables V = {d, e}, all of which
have only one runtime value. For each input, we generate para; as the expression d, which
evaluates to 1, and para; as e — 2, which evaluates to @. Therefore, FC is updated with the new
parameters, resulting in “func1(d, e—2)”, which is semantically equivalent to “func1(1, 0)”.
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Algorithm 3: Global Variable Share.

1 procedure SynGlobal(Target Expression expr, Global Variable G, Profile prof):
2 if IsStable(expr) then

3 val « GetValue(expr)

4 if FlipCoin() then

5 L expr’ « SynthesizeExpression(G, val)
6 else

7 stmt_write = “G = G + (expr — val);”

8 InsertStatementAfter(stmt_wirte)

9 else

10 L expr’ « expr + SynthesizeExpression(G, 0)
1 | returnexpr’

e (Lines 8-10 in Algorithm 2) Since the target expression d is stable, we retrieve its value, i.e.,
val = 1. Since the return value of func1() is 2, we then synthesize the new expression expr’
as func1(d, e — 2) —1, which evaluates to 1 and equals to the runtime value of the target
expression d. The “-1” after the function call is to massage the return value of func1() to the
same value as the target expression d. In our implementation, we used several operators, such

« %

as “+” and “-”, to achieve this.

3.2.2 Build Dependency by Global Variable Share.

Algorithm 3 describes the process of synthesizing global variable share. It breaks down into
synthesizing read and write operations to the global variables. The construction of a read expression
is similar to a function call insertion. Specifically, the new expression expr’ is synthesized based on
the stability of the target expression expr. If expr is stable, the stable value val is used to construct
a new expression expr’ with the same value (lines 4-5). For unstable expressions, we synthesize a
new expression that equals 0 and concatenate it with expr (lines 9-10). When synthesizing a write
operation, we need to ensure that the generated expression does not alter the program semantics
unexpectedly. The reason is that global variables are shared by multiple functions, and their values
need to be statically known so that our generator can precisely control the program semantics.
We achieve this by only using stable variables for global variable writes. A write statement is
constructed by combining g and the expression expr — val, which is 0 as val is the runtime value of
expr. This ensures that the synthesized write operation does not change the runtime value of g
(line 7). This write operation is then inserted into the program at an appropriate location (line 8).

Example. We show how to synthesize the read and write operations for the global variable g from
Figure 7 (a) to (b) with Algorithm 3:
e (Lines 2-3 in Algorithm 3) Suppose the target function is func2() and the target expression is e
at line 16 in the first iteration. Since e is stable, we can generate either read or write operations
for the global variable g. We retrieve the value of e and assign val as 2.

e (Lines 4-5 in Algorithm 3) We synthesize the new expression expr’ as g — 2, which evaluates to
the same value 2 as the original expression e. Then, we replace the original expression e with
expr’ in the program.

e (Line 6-8 in Algorithm 3) In the next iteration, suppose we select func1() as the target function
and a at line 5 as the target expression, we generate the write statement “g = g+ a — 1;” and
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insert it after this location. Because a — 1 is 0, the write operation does not change the runtime
value of g.

3.3 Beyond Creal: Design Innovations in LegoFuzz

LegoFuzz not only addresses the fundamental challenges faced by existing LLM-based compiler
testing tools, but also introduces key innovations that go beyond the capabilities of traditional
fuzzing frameworks. Creal [19] serves as a representative approach in this space, combining real-
world code with Csmith-generated seeds to construct test programs. Thus, Creal’s effectiveness
relies heavily on Csmith seeds, while LegoFuzz is Csmith-free and only uses LLM-generated
code through iterative synthesis. From this perspective, LegoFuzz can potentially extend to other
languages where a mature Csmith-like generator is not available. In addition, as detailed below,
LegoFuzz diverges from Creal in both the construction of its test database and the synthesis of
complete programs, offering a wider applicability and greater flexibility.

3.3.1 Enhancing Code Diversity via Code-Aligned Prompting. For the database construction, the core
contribution of LegoFuzz is the real-world code-aligned prompting in Section 3.1.1, which addresses
the challenge of getting diverse and valid tests in LLM-based testing, which neither Creal nor other
LLM-based compiler testing approaches can solve. For example, Creal is unable to transform the
program shown in Figure 5 (a), as it cannot handle non-numeric types in the buf_write function
syntactically, nor can it resolve the external function realloc_body semantically. As a result, it
achieves only a 5% valid extraction rate. In contrast, LegoFuzz successfully processes such cases,
achieving a valid rate of over 50%.

3.3.2 Generating Complex Programs through Iterative Synthesis. For connecting program fragments,
LegoFuzz presents a novel iterative synthesis methodology that connects different fragments
through function call insertion and global variable sharing, as detailed in Section 3.2. The function
call insertion is indeed similar to Creal, but Creal’s design only supports one-time insertion with
limited types, whereas LegoFuzz supports unlimited insertion times with richer type support.
Other components, like global variable sharing and whole program construction, are all unique
in LegoFuzz. This limitation prevents Creal from covering more lines of code or detecting certain
classes of bugs. We will demonstrate this in Section 5 through both coverage analysis and a case
study highlighting LegoFuzz’s ability to uncover complex bug patterns beyond Creal’s reach.

4 Implementation

This section details the implementation of real-world code-aligned prompting and explains how
the synthesizer integrates into the overall fuzzing process.

4.1 Prompt Design

Given a piece of code extracted from a real-world project, LegoFuzz uses a pre-defined prompt to
guide the LLM to transform the code into a new version. Figure 8 shows the pre-defined prompt. It
begins by defining the role of the LLM as an expert in writing programs and describing the overall
task. The transformation process is guided by the chain-of-thought prompt strategy [37], which
decomposes the task into ordered steps: understanding the code first, followed by generating the
function, and finally verifying the result. To ensure real-world code alignment, detailed instructions
are provided to enforce explicit numeric I/O, preserve logical structures, maintain compatibility, and
avoid undefined behaviors. We also apply few-shot in-context learning [2], offering examples of both
correct and incorrect transformations as well as explanations. The prompt concludes by specifying
output format constraints to ensure that the transformed code can be extracted effectively from the
response. By using this prompt with LLMs, we successfully transform {provided_code_snippet}
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1. System and Task

2. Steps and Instructions

System: You are an expert in converting complex

Steps:

Extract definitions

Extract type declarations

Process variables and functions

Merge logic of all involved functions

. Final verification for the function

(Note: each step is attached with explanation.)
Instructions:

1. Ensure explicit integer-only 1/0

Generate exactly one function

Preserve all logic

Ensure compatibility

No standard I/O functions

. Avoid undefined behavior

(Note: each point is attached with explanation.)

C programs into a single, standalone C function.
Your role is to analyze the given C program,
understand its logic in depth, and transform it
into one self-contained C function that preserves
the original behavior while adhering to all
specified constraints.

AW e

Task: Convert the given C program to one single
compilable C function that takes integer inputs
and returns an integer: {provided_code_snippet}

3. Adversial Examples

Example of incorrect trasnformation:

* Original: {original_code_snippet_A}

* Transformed: {incorrect_code_snippet}
(With the issues of the incorrect transformation)

DU AW

4. Output Requirement

Example of correct transformation:

* Original: {original_code_snippet_B}

* Transformed: {correct_code_snippet}

(With explanation of the correct transformation)

Requirement: Provide only the correctly
transformed function without any
explanations or comments. Ensure the output
adheres strictly to all the above instructions.

Fig. 8. Pre-defined prompt guiding LLMs to transform real-world code.

into the formatted code. An example of this transformation has been shown in Figure 5. Note that
other prompt designs may also work well. Our prompt here provides a useful example that is used
in our implementation. Designing better prompting methods is interesting, but orthogonal to our
work.

4.2 Fuzzing Execution

Detecting crash bugs is straightforward. If a compiler crashes when compiling a test program
generated by LegoFuzz, we find a crash bug. In order to find miscompilation bugs, like CSmith [40]
and other tools derived from it [19], LegoFuzz also employs randomized differential testing. We
compute and print the checksum of the return values from the used functions and global variables
to illustrate the behavior of the generated program. Specifically, we mutate a global variable
by combining the return values of functions with the values of collected global variables. This
mutation process is encapsulated within the main function, and a print statement is included to
output the checksum of the modified global variable. For example, in Figure 7, we will add more
print statements in the main function to output the checksum of the global variable g and the
return values of both func1() and func2(). Finally, we compare the checksum values generated by
different compilers and across various optimization levels to identify discrepant outputs. Discrepant
outputs indicate the presence of a miscompilation bug in one of the compilers. We then reduce the
generated program to a minimal example to manually decide which compiler is buggy and where
to report the bug.

5 Evaluation

In this section, we evaluate the effectiveness and design choices of LegoFuzz through the following
research questions:
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¢ RQ1 (Bug finding and coverage analysis). Is LegoFuzz effective in finding crash and miscom-
pilation bugs in C compilers, and achieving high coverage?

e RQ2 (Ablation analysis). How important are the key components of LegoFuzz, including the
code database, the choice of LLM, and the iteration number?

¢ RQ3 (Comparison with existing tools). How does LegoFuzz compare with existing state-of-
the-art LLM-based testing tools such as Fuzz4All, WhiteFox, and Creal?

e RQ4 (Case study). What types of bugs can LegoFuzz uncover, and how do they demonstrate the
tool’s unique strengths?

5.1 Experiment Setup

Compiler Targets. Our study primarily focuses on the two most widely used and mature C
compilers, i.e., GCC (from 9366940 to eb26b66) and LLVM (from b1560bd to @29cb8a). To ensure up-
to-date evaluations, we update both compilers daily and utilize their latest versions for continuous
testing. We apply five standard optimization levels, i.e., -00, -01, -Os, -02, and -03, across both
compilers.

Large Language Models. We utilized ChatGPT-40-mini, a fast and cost-effective lightweight model
for LLM-based transformations. Specifically, we employ the gpt-40-mini-2024-07-18 checkpoint
with a max_token limit of 512 and a temperature setting of 0.7. Note that LegoFuzz is not limited
to this specific model and also supports locally deployed LLMs. We will evaluate the potential
impacts of different models in Section 5.3.

Code Database. Our toolchain for database construction is partially built upon Creal [19]. To further
enhance the function extraction capability from real-world projects, we extend its capabilities to
support additional C features, such as structs, typedefs, and more. Instead of directly crawling
open-source projects from GitHub, we selected AnghaBench [8], which provides a vast collection
of over 1,040,000 functions extracted from 146 open-source projects on GitHub. These projects
include widely used software such as Linux, Redis, and Nginx, among others. After the offline
code collection described in Section 3.1, we constructed a database with 553,246 functions, around
53% of all functions in AnghaBench. Most discarded functions are due to the LLM not extracting
an invalid function from them. Although the LLM does not always follow our instructions, our
filtering process ensures that only valid code is preserved. Among these discarded functions, the
most common reason is the violation of the first instruction in Figure 8, with an invalid I/O function
rate of 14.2%. The whole database construction costs us $394 in invoking ChatGPT-40-mini. Figure 9
shows the distribution of lines of code and branches in our database. The majority of functions
contain fewer than 60 lines of code and fewer than 10 branches. On average, each function consists
of approximately 30 lines of code and 3 branches. As has been discussed in Section 3.1.2, these
functions alone can not find any compiler bugs.

Environment. We conducted all our evaluations on one Linux server running Ubuntu 20.04 LTS.
It is equipped with an AMD EPYC 7742 64-core CPU and 256GB RAM.

Testing Process. We conducted the fuzzing process continuously on a dedicated server to ensure
thorough and uninterrupted testing. In each round, LegoFuzz selects a single function as the seed
and generates 10 mutant versions of it. For each synthesized test case, we compile and execute the
program using both GCC and LLVM, leveraging their outputs as the test oracle, as discussed in
Section 4.2. Each fuzzing process is constrained to 1 GB of memory and a 200-second compilation
timeout to prevent resource exhaustion and ensure fairness. If a miscompilation or runtime crash
is detected, we employ C-Reduce [7] to minimize the faulty program, isolating the root cause of
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Total ‘ 23 43 ‘ 66 Fig. 9. Distributions of functions in our database.

the issue. Finally, we submit a detailed bug report, including the reduced test case, to the respective
compiler developers for further diagnosis.

5.2 RAQ1: Bug Finding and Coverage Analysis

Bug-finding capability and program coverage are fundamental metrics for evaluating the effective-
ness of a testing approach. We first present the bug-finding results of LegoFuzz, followed by an
analysis of the coverage achieved by its synthesized programs.

Baseline: individual function testing. We conducted an experiment using functions directly
from our database to test the latest versions of GCC and LLVM. The results were conclusive —
no compiler bugs were detected. This outcome is not surprising. While our database collectively
contains diverse program features, each individual function implements only a limited subset of
these features. Modern compiler optimizations operate on complex interactions between program
elements, often requiring specific combinations of features to trigger bugs. Programs that expose
compiler bugs typically contain intricate control flows, data dependencies, and feature interactions
that simple, isolated functions lack.

Number of Bugs. Table 1 provides the status summary of all reported bugs identified by LegoFuzz.
In total, LegoFuzz has reported 66 bugs; 58 of them (88%) have been confirmed as previously
unknown and new bugs, and 56 bugs (85%) have already been fixed. Specifically, GCC developers
have fixed 100% (18/18) of the reported bugs, while LLVM developers have fixed 95.0% (38/40) of
them. This highlights the effectiveness of LegoFuzz in identifying critical issues and the willingness
of both GCC and LLVM developers to address our reported bugs. Since compiler maintainers,
users, and testers are also testing compilers, LegoFuzz reported 8 duplicate bugs that were concur-
rently identified by them. Nevertheless, the significant number of new bugs identified by LegoFuzz
demonstrates its strong bug-finding capability.

Symptoms of Bugs. Table 2 summarizes the symptoms of our reported bugs. These bugs can be
categorized into two main types: (1) Crash: This type of bug occurs when the compiler encounters
an internal error during the compilation process, typically due to assertion failures or runtime
failures. (2) Miscompilation: In this case, the compiler implicitly generates incorrect code without
any observable consequences. Such bugs are hard to detect and are the most concerning type
of bugs in compilers [3]. As shown in the table, nearly half of the bugs are miscompilation bugs,
demonstrating the strong capability of LegoFuzz in detecting hard-to-detect bugs. Detecting such
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Table 3. Affected LLVM components.
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miscompilation bugs requires valid and feature-rich testing programs. As a comparison, none of
the existing LLM-based compiler testing tools [38, 39] can find any miscompilation bugs in either
GCC or LLVM.

Importance of bugs. To assess the impact of the discovered bugs, we tested each bug-triggering
program to see if they can trigger crashes or miscompilations on earlier stable compiler versions.
Figure 11 shows the number of bugs affecting different compiler versions. The result indicates that
LegoFuzz is highly effective at uncovering long-latent bugs — issues that have persisted undetected
for years despite extensive compiler testing efforts. Notably, we identified 7 bugs that affected GCC
versions predating GCC-12 and 8 bugs that impacted LLVM versions released before LLVM-18.
Given that these compiler versions have been released from 1 to 10 years ago, the longevity of these
undetected bugs underscores their criticality. Remarkably, one particular GCC miscompilation bug
was traced back to a code change that has existed since at least 2006. This demonstrates that the
bug remained unnoticed for nearly two decades, highlighting the limitations of existing testing
methodologies. Since there are numerous compiler testing efforts in both academia and industry,
the fact that these long-latent bugs have evaded all previous testing techniques further highlights the
exceptional bug-finding capability of LegoFuzz.
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Beyond exposing long-hidden issues, some of our discovered bugs also provide valuable insights
for the improvement of future compilers or related tools. For example, one miscompilation bug?
was found to have implications for future, yet-to-be-developed versions of GCC. Furthermore,
discussions regarding the root cause of a long-latent GCC miscompilation bug led to unexpected
reactions from developers. Figure 10 shows the comments we received for one of our reported
bugs. A GCC maintainer expressed the surprise that our reported bug had not been detected by
smtgce [36], which is designed to guarantee the detection of the reported bug. In response, the
smtgcc maintainer acknowledged the limitation and stated that he would introduce additional
support to detect similar ancient bugs in future analyses.

Affected compiler components. Table 4 and Table 3 summarize the compiler components affected
by the bugs we identified in GCC and LLVM, respectively. These components were determined based
on the diagnostic information and fix messages provided by compiler maintainers. As shown in the
results, LegoFuzz is capable of uncovering a diverse range of bugs. In both GCC and LLVM, many
of the bugs are related to loop transformations and peephole optimizations, which is consistent
with findings from prior empirical studies [42]. To offer a more comprehensive understanding, we
will present representative bug cases in Section 5.5, demonstrating the distinctive characteristics of
our synthesized programs and their effectiveness in compiler testing.

Coverage and generation speed. We perform the coverage analysis and track the generation
time throughout the fuzzing process to assess whether LegoFuzz can effectively explore more parts
of the compilers and how efficient it is. Starting from 1,000 randomly selected seed functions, we let
LegoFuzz generate 10 programs for each seed, resulting in 10,000 programs produced by LegoFuzz.
We then measure function coverage, line coverage, and branch coverage of these programs across
GCC and LLVM.

Table 5 and Figure 12 present the results of our coverage analysis. The “Seed” rows in Table 5
and bars in Figure 12 show the coverage of the 1,000 seed functions that LegoFuzz starts from.
The “Functions” rows and bars show the coverage of 10,000 randomly selected functions from our
database. That is, we directly use these functions individually as testing programs. The “LegoFuzz”
rows and bars show the coverage of the 10,000 programs generated by LegoFuzz. It is not surpris-
ing that LegoFuzz significantly enhances coverage compared to the seed functions. Specifically,
LegoFuzz increases line coverage in GCC by 12.5%, corresponding to 110,945 additional lines, and

Thttps://gce.gnu.org/bugzilla/show_bug.cgi?id=118638
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in LLVM by 2.9%, covering 80,295 more lines. Similar trends are observed for function coverage
and branch coverage. Compared to “Functions”, LegoFuzz achieves substantially higher coverage,
indicating that iterative synthesis plays a crucial role in generating more complex programs that
engage a wider range of compiler features.

We also logged the time used to generate the 10,000 programs by LegoFuzz. In total, LegoFuzz
generated these 10,000 programs in 193 seconds, averaging 0.02 seconds per program. This high
efficiency indicates that program generation is not a bottleneck for LegoFuzz. In fact, we observed
that most of the time during compiler testing is spent on compiling the generated programs, which
can often take several seconds per program.

5.3 RQ2: Ablation Analysis

We study the impact of the code database, the choice of LLM, and the iteration number on the
effectiveness of LegoFuzz, using coverage as the primary metric.

Importance of code database. The effectiveness of LegoFuzz is closely related to the quality
of the code database. A consequent question is whether the quality and size of the code database
contribute to the effectiveness of LegoFuzz. To answer this question, we conduct a coverage analysis
on different variants of the database:

. LegoFuzz—%: We reduce the size of the code database used in LegoFuzz by half. Specifically, we
randomly select half of the available functions and use this smaller subset during generation
of 10,000 cases.

e legoFuz. -}1: We further halve the database, reducing it to a quarter of its original size to
generate 10,000 cases.

e legoFuzz-Creal: We apply Creal’s original database to guide LegoFuzz in generating 10,000
test cases. The resulting coverage is shown in the “L+RealDB” bar in Figure 12.

e Creal-LegoFuzz: We use LegoFuzz’s code database to generate 10,000 test cases under the
Creal framework. The “C+LegoDB” bar in Figure 12 shows the resulting coverage.

The third to fifth bars in Figure 12 show the results of using different size of LegoFuzz’s code
database. We can observe a clear trend: as the code database size increases, so does the achieved
line coverage. LegoFuzz outperforms LegoFuzz-% and LegoFuzz-% outperforms LegoFuzz—i in both
GCC and LLVM, indicating that a larger code database provides more diverse features. This also
suggests that future work on establishing a larger code database can potentially further improve
LegoFuzz. We observe that applying Creal’s database to guide LegoFuzz (“L+RealDB”) leads to
reduced coverage compared to LegoFuzz with its own database, highlighting the importance of our
LLM-driven offline phase and real-world code-aligned prompting strategy. Meanwhile, when Creal
is guided by our database (“C+LegoDB”), it achieves substantially higher coverage than using its
original database (“Creal”), as shown in Figure 12. This demonstrates that our code database is also
broadly effective across different frameworks.

Alternative Large Language Models. In our current implementation, we utilize ChatGPT-40-mini
as the underlying LLM. Although the choice of LLM is orthogonal to the design of our framework,
we aim to explore the adaptability and generalizability of our framework across different models.
We select ChatGPT-3.5-turbo [29] and Qwen2.5 Coder 32B Instruct [30] for evaluation. Since GPT-
3.5-turbo is a legacy model, we aim to evaluate whether our framework can effectively adapt to a
less powerful model. Since Qwen Coder is a well-known code-specific LLM, we aim to evaluate
whether a specialized model can generate a more expressive code database.
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The “Functions” rows in Table 5 show the coverage of the 10,000 functions in the database used by
LegoFuzz. These functions are generated by GPT-40-mini by transforming 10,000 real-world code
snippets. With the same pipeline, we ask each of the two new LLMs to generate 10,000 functions.
Finally, we evaluate the coverage of these two sets of new functions.

The “GPT-3.5” and “Qwen” bars in Figure 12 show the coverage of the 10,000 functions gener-
ated by GPT-3.5-turbo and Qwen Coder, respectively. As expected, GPT-3.5-turbo achieves lower
coverage compared to the more advanced GPT-40-mini (“Functions”). Qwen Coder, on the other
hand, achieves higher coverage compared to GPT-40-mini, indicating that a specialized model can
generate a more expressive code database and potentially improve the performance of LegoFuzz.
Nevertheless, our design of LegoFuzz is loosely coupled with the choice of LLM, and the prompt
can be easily adapted to better suit specific LLMs. Our core contribution is the design of a novel
testing framework, which is orthogonal to the choice of LLM.

Impact of iteration number. In Algorithm 1, LegoFuzz uses the iteration number N to control
the number of synthesis iterations during the online phase. To understand the impact of N, we set
N to 10, 50, 100, 150, and 200. For each N, we generate 10,000 programs. We then compute the
average lines of code (LOC) across the programs, the time of generating 10,000 programs, and the
line coverage of these programs.

Figure 13 shows the trend in LOC as N increases. There is a clear upward trend in LOC, with the
maximum LOC exceeding 15,000 when N reaches 200. This is expected as a higher N leads to more
functions being selected for synthesis. Figure 14 shows that more iterations require more time to
generate programs, but the coverage does not increase much after N reaches 100. The main reason
is that additional functions introduced by more iterations do not contribute meaningfully to the
overall coverage, as most of the relevant code paths have already been explored. They may even
hinder compiler optimization, as evidenced by the noticeable decline in GCC coverage. Therefore,
for practical real-world fuzzing applications, setting N to 100 offers a good balance between a
reasonable generation time and a high coverage.

5.4 RQ3: Comparison with Existing Tools

We compare LegoFuzz with Fuzz4All [38], WhiteFox [39], and Creal [19], three state-of-the-art
compiler testing frameworks. While Fuzz4All and WhiteFox represent recent LLM-based approaches,
Creal integrates real-world code with traditional fuzzing via Csmith.

Bug-finding analysis. We manually collected and analyzed all the reported GCC and LLVM bugs
by Fuzz4All and WhiteFox. The results show that neither Fuzz4All nor WhiteFox has discovered
any miscompilation bugs. In particular, Fuzz4All focused on g++, GCC’s C++ compiler. In total,
Fuzz4All discovered only eight confirmed bugs with half of them being fixed. Notably, all of them
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are related to g++ frontend issues, rather than compiler optimizations. WhiteFox, on the other
hand, has identified two bugs in LLVM — one is a backend-related crash, and another is a crash in
error diagnostics. These findings suggest that both tools have very limited effectiveness in testing
C compilers, as their discovered bugs do not touch the core compiler optimizations. Since Creal
has extensively tested the GCC and LLVM, the fact that LegoFuzz discovered many long-latent
bugs demonstrates the strong complementary bug-finding capability of Creal. We will discuss such
cases in Section 5.5 to show the distinctive characteristics of discovered bugs.

Coverage analysis. We generate 10,000 test cases using Fuzz4All, WhiteFox and Creal for evalu-
ation. Since WhiteFox is designed to generate C++ code, which is then converted into LLVM IR
instead of directly targeting C, we only measure its LLVM coverage.

For LLM-based tools, as shown in Figure 12, Fuzz4All achieves significantly lower line coverage
in GCC compared to LegoFuzz, with a coverage gap of over 50,000 lines of code. In LLVM, both
tools exhibit even lower coverage than the raw function-level inputs used by LegoFuzz prior to the
synthesis process, highlighting their limited effectiveness in covering compiler optimizations. For
Creal (“Creal”), LegoFuzz still outperforms it substantially, demonstrating the advantage of our
proposed unique methods. We further observe that using the same code database (“L+RealDB”),
LegoFuzz still achieves higher coverage than Creal, highlighting the effectiveness of its iterative
synthesis strategy.

Generation speed analysis. The time cost of generating 10,000 test programs for Fuzz4All and
WhiteFox is 12,121 and 28,284 seconds, respectively. Compared to LegoFuzz’s default configuration
with NV = 100 (193 seconds), Fuzz4All and WhiteFox are considerably slower, taking 62 times and
146 times longer, respectively. Although all tools rely on LLMs, the offline and online decoupling
design of LegoFuzz allows it to generate test programs at a much faster speed. We also include Creal
in this comparison, which takes 13,997 seconds to generate the same number of programs. LegoFuzz
eliminates the dependency on Csmith-generated seeds by directly composing functions from code
database, which enables not only faster generation but also greater portability to languages without
mature seed generators.

5.5 RQ4: Case Study

This section presents four cases to demonstrate that LegoFuzz can discover deep bugs in compilers.
Note that all programs are reduced and simplified from the original ones for better readability.

Figure 15 (a): The original bug-triggering program generated by LegoFuzz contains 4,945 lines
and 62 functions. This reduced program triggers a crash in GCC with the -O3 optimization flag.
The issue occurs because GCC mistakenly classifies a reduction pattern in the outer loop when, in
fact, the variable is not used outside the loop. Specifically, in line 16, the variable c is incremented
within the inner loop, which GCC misinterprets as a reduction operation that spans both loops.
This leads to an assertion failure during the vectorization pass, resulting in a compiler crash.

Figure 15 (b): The original bug-triggering program generated by LegoFuzz contains 6,697 lines
and 91 functions. This reduced program triggers a miscompilation in LLVM due to an incorrect
transformation performed by the InstCombine pass. The issue arises from an invalid optimization
applied immediately after inlining the function 1() into m(). Specifically, in line 5, the function
f() computes a pointer offset using g + *k, where g is an array and k is an integer pointer.
However, after inlining, LLVM incorrectly simplifies the sext operation, leading to an incorrect
getelementptr (GEP) offset calculation in line 10. This results in a miscomputed pointer access,
which causes undefined behavior when dereferencing d in line 6. This miscompilation causes
the compiled binary to return 143 instead of 0. This program features a long and semantically
meaningful function call chain starting from m(), which is rarely observed in Creal’s bug cases. Such
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1 int a; 1 int printf(const char *, ...);

2 char b; 2 char a, b; int c; char *e = &b;

3 long c, d, e; 3 int f(char *g, int *k) {

4 unsigned long f; 4 char *d = g + *k;

5 1long g() { 5 for (; *d && *d <= "' '; d++) ;

6 if (a <= 0) 6 if (*d) return 0;

7 return 1; 7 return 1;

8 for (; d; d++) { 8 }

9 e =0; 9 int 1(int g) {

10 for (; e < a; e++) { 10 char h[] = {a, a, a};

11 unsigned long h = ©; 11 int i[] = {g};

12 switch (b) 12 int j = f(h, 1i);

13 case 2: 13 return j;

14 if (e) 14 }

15 h = 5; 15 long m() {

16 c += h; 16  *e = 255;

17 } 17  for (; 1(b + 1);) return 0;

18 } 18  for (53)

19 ¢ /= f; 19 }

20 } 20 int main() { m(); printf("%d\n", c);}
(a) GCC -03 crashes on this code. It ICEs on the (b) LLVM at -O3 miscompiles this code. The compiled
unexpected stmt/SLP node arrangement. binary returns 143 instead of 0.

1 char a; 1 int printf(const char *, ...);

2 struct b { 2 int a, c;

3 short c; 3 long b;

4 char d; 4 short d;

5 long e; 5 1long e(long f, long h, long i) {

6 int f; 6 for (long g = f; g <= h; g += 1)
7 } static g; 7 b += g;

8 int h; 8 return b;

9 wvoid i(struct b j) { 9 }

10 char k; 10

11 int 1; 11 int main() {

12 for (; j.d; --j.d) { 12 c =1;

13 1=yg.c==0 2?0 : 42949672950 % g.c; 13 for (; c >= @; c--)

14 k=1>2|]la>»>1?e0:1; 14 ;

15 h = k; 15 for (; e(d + 40, d + 76, c + 51) < 4;)
16 } 16 H

17 } 17  printf("%X\n", a);

18 void m() { i(g); } 18 }

(c) LLVM at -O2/3 crashes on this code. It triggers (d) GCC at -02/3 miscompiles this code. The compiled
assertion failure in LoopVectorize. binary times out instead of returning 0.

Fig. 15. Sample reduced programs that trigger compiler bugs.

patterns emerge naturally from LegoFuzz’s unique iterative program synthesis, where complex
interactions between function calls and global variables are progressively constructed.

Figure 15 (c): The original bug-triggering program generated by LegoFuzz contains 3,989 lines and
107 functions. This reduced program triggers a crash in LLVM. The bug occurs due to a discrepancy
between the new VPlan cost model and the legacy cost model. Specifically, in line 12, the loop
iterates when j.d is nonzero, decrementing j.d in each iteration. Inside the loop, in line 13, the
expression 4294967295U % g.c is computed, which results in an undefined behavior if g. c is zero.
LLVM’s loop vectorization planner attempts to determine the best vectorization factor, but during
cost analysis, an inconsistency arises between the two cost models. This results in an assertion
failure in LoopVectorize due to a mismatch in the expected vectorization behavior.
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Figure 15 (d) The original bug-triggering program generated by LegoFuzz contains 6,485 lines
and 24 functions. This reduced program triggers a miscompilation bug in GCC. The root cause
is in the loop iteration analysis. Specifically, in line 7, the function e() accumulates values into
the global variable b using a loop in steps of i. However, in line 15, the second loop in main()
callse(d + 40, d + 76, c + 51), with c being decremented to -1 in the previous loop. Since
c influences the step size (i in e()), the compiler performs an invalid transformation of the loop
bound, leading to an incorrect evaluation of the loop exit condition. GCC incorrectly optimizes the
loop termination check, replacing a less-than comparison (g <= h) with a non-equal comparison
(g '= h), which leads to an unintended infinite loop depending on the initial values.

6 Discussion

> Alternative prompting methods. LegoFuzz adopts a flexible design that allows for prompt
customization, enabling it to better align with specific models. As Section 5.3 indicates, the current
prompt is particularly effective for models that excel at processing natural language instructions.
However, it may not be as suitable for task-specific models, such as those specialized in code
generation. By adjusting the prompt, we can optimize the transformation process to accommodate
different types of language models and enhance their performance in generating diverse code
structures. Better prompt design and better LLM models can improve the quality of the constructed
code database, further enhancing the effectiveness of LegoFuzz.

> More function signatures. Our current approach leverages LLMs to generate numeric func-
tions only. The core reason is to simplify the iterative synthesis process. Using numeric values for
both function inputs and outputs and global variables eases our engineering effort in connecting
different codes together. Supporting more types is theoretically doable, but it would require addi-
tional engineering efforts. Furthermore, even for numeric functions, the function bodies contain
a much divergent range of types, such as strings and user-defined structs, and thus, the overall
expressiveness of the generated programs is not affected.

> Alternative sources of code snippets. LegoFuzz shows, for the first time, that LLMs can be used
to find deep compiler bugs. Given a constructed code database, the online synthesis component of
LegoFuzz can generate testing programs. It is theoretically possible to use methods other than LLMs
to construct the code database. For example, we can use historical bug-triggering programs [41] or
real-world functions directly [19]. However, we argue that these sources are not as extensive as
LLMs. Compared to real-world programs, historical bug-triggering programs are far less diverse.
Directly using real-world programs is also constrained by their complexity and uncertainty. For
example, Creal [19] only manages to collect fifty thousand functions from one million real-world
programs. In comparison, we can generate over half a million functions. Therefore, coupled with
LLMs, LegoFuzz can be more effective in discovering deep bugs.

» Beyond function level synthesis. LegoFuzz chains multiple functions together to form a testing
program. One may wonder whether working at the granularity of function would lead to a loss of
diversity in the generated programs. We argue that these programs are expressive enough to cover
a wide range of compiler behaviors: (1) Our bug-finding results in Section 5 have already shown
that LegoFuzz can discover deep bugs in various compiler optimizations, and (2) most compiler
optimizations work at the function level [13, 23], ensuring that our testing programs can exercise
a wide range of compiler optimizations. Extending LegoFuzz to support other levels of program
synthesis is an interesting direction for future work and does not affect the core contribution of
LegoFuzz. For example, when building dependencies between two functions, instead of generating
a function call, we can directly merge one function body into another to form a larger function.
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However, this is similar to the existing practice of inlining functions during compilation. Adding
“__attribute__((always_inline))” directive to function definitions can also achieve a similar effect.
> Beyond C compiler testing. LegoFuzz describes a new paradigm of compiler testing, i.e., using
LLMs to generate building blocks first and thus use them to synthesize testing programs. This paper
provides the first proof-of-concept implementation of this new paradigm on testing C compilers.
Implementing LegoFuzz takes much less engineering effort than writing a program generator from
scratch. This opens up many exciting opportunities for testing compilers for various programming
languages, such as Rust, where a reliable and efficient program generator is not yet available.

7 Related Work
7.1 Generation-based compiler testing.

Significant efforts have been dedicated to developing automated program generators for compiler
testing. Csmith [40] is one of the most widely used program generators for detecting C/C++
compiler bugs. It can generate a large number of test programs covering a broad subset of the C
language while avoiding undefined behaviors, making it an essential tool for compiler validation.
CLsmith [20] is inspired by Csmith, which is a program generator for OpenCL compilers and has six
modes for generation. Morrisset et al. [24] extended Csmith by incorporating support for mutexes,
atomic variables, and system calls for locking and unlocking mutexes, enabling the detection of
C/C++ concurrency bugs. YARPGen [21] and its successor, YARPGen v2 [22], are modern program
generators specifically designed to test scalar and loop optimization bugs.

While these tools have been effective in discovering numerous compiler bugs, they are rule-driven
and may eventually reach a saturation point [1], where they struggle to uncover new bugs in a
given compiler. This limitation arises from the predefined constraints embedded in these generators,
which restrict their ability to explore certain aspects of compiler behavior. LegoFuzz addresses this
limitation by leveraging real-world programs instead of relying solely on predefined generation
rules. By adopting a data-driven rather than a rule-driven approach, LegoFuzz benefits from the
rich expressiveness of real-world code, significantly expanding the search space and enhancing its
ability to explore deeper compiler behaviors.

7.2 Mutation-based compiler testing.

Instead of generating a complete program from scratch, another line of research is to mutate parts of
an existing test program. Some of the most effective tools maintain semantic equivalence during mu-
tation by leveraging the concept of equivalence modulo inputs (EMI) [16]. For instance, Orion [16]
and Athena [17] employ random and guided mutation strategies, respectively, primarily by inserting
or deleting dead code blocks. In contrast, Hermes [33] focuses on mutating live code — sections that
are actually executed. Meanwhile, GrayC [11] applies coverage-guided mutations to seed programs,
which proves effective in detecting crash bugs, though it has not been successful in uncovering
miscompilation bugs. Beyond semantics-preserving mutations, some approaches modify programs
without maintaining their original semantics. For example, classfuzz [4] mutates class files using a
diverse set of mutation operations to test JVM implementations. Similarly, LangFuzz [14] adopts a
two-phase fuzzing strategy, i.e., learning and mutation, to discover bugs in JavaScript interpreters.
It reuses syntax-valid code fragments from seed programs, but performs static, grammar-based
substitutions. In contrast, LegoFuzz applies LLM-based, context-aware transformations, enabling
more expressive and adaptive mutations. Negai et al. propose a program generator [26] for random
arithmetic expressions, which employs non-semantics-preserving mutations on the generated
expressions. This work builds upon their earlier approach [25], which preserved semantics to avoid
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introducing undefined behavior. In the later work, they enhance the generator by incorporating
heuristics to produce more diverse expressions.

Similar to random test case generators, mutation-based compiler testing is also constrained by
predefined mutation rules, which limit the diversity of generated test cases. These approaches
often struggle to explore complex or unexpected program behaviors that may trigger deeper
compiler bugs. To overcome this limitation, LegoFuzz incorporates iterative synthesis and LLM-
based transformations to enhance mutation diversity. Instead of relying solely on fixed mutation
rules, our framework leverages real-world programs as a foundation for mutation, ensuring a
broader and more expressive test space. By utilizing LLMs, we can intelligently transform code at
the syntax level while preserving its structural integrity. Through iterative rounds of mutation and
synthesis, LegoFuzz continuously refines and expands the mutation space, significantly improving
its ability to uncover deep-seated compiler bugs.

7.3 LLM-based Compiler Testing

With the rapid advancement of large language models (LLMs), leveraging LLMs for test case
generation has emerged as a promising direction in compiler testing. Fuzz4All [38] is the first
universal fuzzer that utilizes LLMs as both an input generator and a mutation engine, enabling the
testing of widely used systems, including compilers. It employs a large distillation LLM to sample
multiple candidate prompts, which are then passed to a generation LLM to produce diverse test
cases. WhiteFox [39] is the first white-box compiler fuzzer that integrates LLMs with source-code
analysis to test deep learning (DL) compiler optimizations. It adopts a multi-agent framework
comprising three key components: Requirement Summarization, Test Generation, and Feedback Loop.
Given the optimization pass source code from DL compilers, it analyzes the requirements necessary
to trigger optimizations, generates corresponding test cases, and feeds valid cases back into the
loop for continuous refinement.

Despite their effectiveness, these existing tools heavily center around LLMs, leading to multiple
interactions per test case generation round, which significantly increases computational cost and
makes them time-consuming compared to traditional testing approaches. In contrast, LegoFuzz
adopts a hybrid offline/online mode to enhance reuse efficiency, reducing both the computational
and financial burden. The generated test cases undergo rigorous validation to ensure high quality,
making LegoFuzz a more efficient and scalable solution. Evaluation results in Section 5.4 demonstrate
that LegoFuzz outperforms existing LLM-based frameworks.

8 Conclusion

We present LegoFuzz, an LLM-based compiler testing framework that decouples the compiler testing
process into two synergistic phases: an offline phase and an online phase. In the offline phase, we
leverage real-world code-aligned prompting to guide LLMs in generating small, feature-rich, and
valid program snippets. These building blocks are then reused in the online phase to synthesize
large and complex test programs through iterative program synthesis. Our evaluation demonstrates
the effectiveness of this approach. LegoFuzz has uncovered 66 bugs in GCC and LLVM, most of
which have already been fixed by compiler developers. Notably, nearly half of the reported bugs
are miscompilation bugs, which cannot be detected by previous LLM-based tools. We believe that
LegoFuzz opens up a new paradigm of compiler testing, and we are excited to see more research in
this direction.

Data-Availability Statement

LegoFuzz is open-sourced at https://github.com/cuhk-s3/LegoFuzz. All the source code and data
for reproducing the experimental results in this paper are available here [27].
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