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Abstract
Using large language models (LLMs) to test compilers is
promising but faces two major challenges: the generated
programs are often too simple, and large-scale testing is
costly. We present a new framework that splits the process
into an offline phase—where LLMs generate small, diverse
code pieces—and an online phase that assembles them into
complex test programs.

Our tool, LegoFuzz, applies this method to test C compilers
and has discovered 66 bugs in GCC and LLVM, including
many serious miscompilation bugs that prior tools missed.
This efficient design shows strong potential for broader AI-
assisted software testing.

CCS Concepts: • Software and its engineering → Com-
pilers; Software testing and debugging.
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1 Introduction
Compilers are critical in today’s software ecosystem, yet they
remain vulnerable to bugs despite years of improvement [1].
To address this, researchers have developed various testing
techniques, including random program generation [7–9, 15]
and mutation-based methods [2–6, 12].
Recently, large language models (LLMs) have opened up

new opportunities in compiler testing. Tools like Fuzz4All [13]
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andWhiteFox [14] use LLMs to generate test programs based
on prompts, aiming to improve the diversity and effective-
ness of compiler fuzzing. However, practical adoption of
these tools still faces two major challenges:
➤ Challenge 1: Low-quality test programs. LLMs often
produce overly simple or invalid code—syntactically incor-
rect or semantically unsound—making them ineffective for
uncovering deep compiler bugs such as miscompilations. Ex-
isting LLM-based tools mostly report frontend crashes, with
generated programs short and lacking complexity.
➤ Challenge 2: High computational cost. Embedding
LLMs in the testing loop is expensive. Systems like Fuzz4All
yield only tens of thousands of valid programs per day, far
fewer than traditional fuzzers that generate millions effi-
ciently, making large-scale LLM-based fuzzing impractical.
➤ Our Idea and Approach. To address the limitations of
current LLM-based compiler testing, we decouple the process
into two phases: an offline phase and an online phase.
In the offline phase, we employ LLMs to generate small

yet diverse code snippets, guided by real-world templates
and filtered for syntactic and semantic validity. Over 500,000
single-function samples from 146 open-source projects (e.g.,
Linux, Redis, Nginx) are collected into a large code database.

In the online phase, we compose these functions into com-
plex test programs by inserting function calls and sharing
global variables under type and semantic constraints, en-
abling coherent, large-scale, and cost-efficient fuzzing with-
out invoking LLMs during testing.

2 Our Approach: LegoFuzz
We introduce LegoFuzz, whose core idea is to separate the
testing process into offline and online phases. Figure 1 shows
the high-level workflow of LegoFuzz. In this section, we de-
scribe the technical details of our LegoFuzz framework. Sec-
tion 2.1 details the offline code collection with large language
models, while Section 2.2 introduces the online iterative pro-
gram synthesis.

2.1 Offline Code Database Construction
The goal of the offline phase is to construct a reusable data-
base of validated, expressive C functions using large lan-
guage models (LLMs). These functions serve as building
blocks for test program synthesis in the online phase.
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Figure 1. Design overview of LegoFuzz.

Each entry in the database D𝐹 is a pair 𝐸𝑖 = {𝐹𝑖 ,�𝑝𝑟𝑜 𝑓 𝑖 },
where 𝐹𝑖 is a self-contained function, and �𝑝𝑟𝑜 𝑓 𝑖 is a runtime
profile containing input/output values and expression states.
➤ Code Generation via Real-world Alignment. Direct
LLM prompting often fails to produce diverse and complex
code patterns. To address this, we introduce real-world code-
aligned prompting, which guides LLMs to transform real-
world functions from open-source projects into numeric,
single-function representations. This improves both expres-
siveness and controllability. Prompts are designed to enforce:

• Syntax-level alignment: The output must be a single
function with numeric-type inputs and outputs, and
no extra declarations.

• Semantics-level alignment: The transformed func-
tion must preserve the logic of the original, flattening
complex types and inlining helpers as needed.

➤ Validation and Profiling. Generated functions undergo
two-stage validation: compilation for syntactic correctness,
followed by randomized execution with sanitizers [10, 11]
to detect undefined behavior. Only passing functions are re-
tained. For each, we record a runtime profile �𝑝𝑟𝑜 𝑓 𝑖 capturing
input/output values and per-line expression results.

As shown on the left of Figure 1, in Step 1○ we use LLMs
to transform real-world code into functions. In Step 2○, we
validate each function via compilation and runtime checks.
Valid ones (e.g., func1, func2, func4) are profiled and stored
in the database, while invalid ones (e.g., func3) are discarded.

2.2 Online Iterative Program Synthesis
To effectively expose compiler bugs, test programs must fea-
ture complex control flows and inter-function interactions.
Simply aggregating independent functions is inadequate. We
thus adopt an iterative synthesis approach that combines
functions from the offline database with semantic dependen-
cies built through two mechanisms: (1) function call inser-
tion, guided by runtime profiles to preserve behavior, and
(2) global variable sharing, which establishes cross-function
data dependencies.
➤ Synthesis Procedure. Given a code database D𝐹 and an
iteration count N , the synthesis proceeds as follows:
Step 1. Seed Selection: Select a random function from D𝐹

and generate a driver program to invoke it.

Figure 2. Line coverage of different variants

Step 2. Expression Matching: Identify replaceable expres-
sions from the selected function based on runtime
profiles.

Step 3. Dependency Construction: For each matched expres-
sion, synthesize a dependency by either inserting a
function call or using a shared global variable.

This process is repeated for N iterations, gradually ex-
panding the program while preserving its semantics. By
leveraging runtime profiling, the synthesis ensures that all
transformations maintain valid execution behavior.

As shown in the right part of Figure 1, the synthesis begins
in Step 3○ by selecting func1 as the seed. In Step 4○, func1 is
expanded by replacing an expression with a call to func2(),
guided by profiling data. Then, in Step 5○, additional depen-
dencies are introduced: func2 calls func4, and func4 reads
a shared global variable g. This process continues in Step 6○,
enabling further reuse of building blocks.

3 Evaluation
We evaluate LegoFuzz on bug-finding capability and cover-
age improvement.
➤ Bug finding. LegoFuzz discovered 66 compiler bugs,
including 30 miscompilations, with 56 already fixed. Un-
like Fuzz4All and WhiteFox, which mainly trigger frontend
crashes, LegoFuzz exposes deep optimization bugs—some
hidden for nearly 20 years1 .
➤ Coverage improvement.As shown in Figure 2, LegoFuzz
increases coverage by 12.5% in GCC and 4.9% in LLVM over
Seeds and Functions, and covers about 20K more lines in
GCC and 50K more in LLVM than Fuzz4All and WhiteFox.
Replacing GPT-4o with GPT-3.5 or Qwen still outperforms
Seeds, confirming LegoFuzz ’s generalizability.

4 Conclusion
We present LegoFuzz, a compiler testing framework that
combines LLM-generated code snippets with iterative syn-
thesis. It has found 66 bugs in GCC and LLVM, including
30 miscompilations—far more than prior LLM-based tools.
LegoFuzz shows that simple, reusable building blocks can
enable scalable and effective compiler testing. We hope it
inspires future work in this area.

1https://gcc.gnu.org/bugzilla/show_bug.cgi?id=118915
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